• Public Health England. Excess weight and COVID-19. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/907966/PHE_insight_Excess_weight_and_COVID-19__FINAL.pdf [Accessed 28/09/2020]
  • Statistics on Obesity, Physical Activity and Diet, England (2020). Available from: https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet/england-2020/part-3-adult-obesity-copy [Accessed 28/09/2020]
  • Holzapfel C, Cresswell L, Ahern AL, Fuller NR, Eberhard M, Stoll J, Mander AP, Jebb SA, Caterson ID and Hauner H. The challenge of a two-year follow-up after intervention for weight loss in primary care. International Journal of Obesity. 2005; 38: p 806-811
  • Mann T, Tomiyama AJ, Westling E, Lew A, Samuels B, Chatman J. Medicare's search for effective obesity treatments: diets are not the answer. Am Psychol. 2007; 62(3): 220-33
  • Barte JCM, Ter Bogt NCW, Bogers RP, Teixeira PJ, Blissmer B, Mori TA, Bemelmans WJE. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obesity reviews. 2010; 11 (12): 899-906
  • Finkelstein EA, Kruger E. Meta‐ and cost‐effectiveness analysis of commercial weight loss strategies. Obesity. 2014; 22 (9): 1942-1951
  • Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL and Anis AH. The incidence of comorbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009; 9 (88)
  • Ma C, Avenell A, Bolland M, Hudson J, Stewart F, Robertson C, Sharma P, Fraser C, MacLennan G. Effects of weight-loss interventions for adults who are obese on mortality, cardiovascular disease and cancer: systematic review and meta-analysis. BMJ. 2017; 359 (4849)
  • Tylka TL, Annunziato RA, Burgard D, Daníelsdóttir S, Shuman E, Davis C and Calogero RM. The Weight-Inclusive versus Weight-Normative Approach to Health: Evaluating the Evidence for Prioritising Well-Being over Weight Loss. Journal of Obesity. 2014.
  • Stice E, Marti CN and Durant S (2011). Risk factors for onset of eating disorders: Evidence of multiple risk pathways from an eight-year prospective study. Behaviour Research and Therapy, 49(10), 622-627
  • Patton GC, Selzer R, Coffey C, Carlin JB, Wolfe R. Onset of adolescent eating disorders: population-based cohort study over 3 years. BMJ. 1999; 318(7186): 765-8
  • Stice E, Presnell K, Spangler D. Risk factors for binge eating onset in adolescent girls: A two-year prospective investigation. Health Psychology. 2002; 21(2): 131-138
  • Bacon L, Aphramor L. Weight Science: Evaluating the Evidence for a Paradigm Shift. Nutrition Journal. 2011; 10 (9)


  • Daneman D (2006). Type 1 diabetes. The Lancet, 367(9513), p 847-858
  • Royal College of Paediatric and Child Health (2020). National Paediatric Diabetes Audit (NPDA) 2018-2019. RCPCH/HQIP
  • Ziaian T, Sawyer MG, Reynolds KE, Carbone JA, Clark JJ, Baghurst PA, Couper JJ, Kennedy D, Martin AJ, Staugas RE and French DJ (2006). Treatment burden and health‐related quality of life of children with diabetes, cystic fibrosis and asthma. Journal of paediatrics and child health, 42(10), p 596-600
  • Wake M, Hesketh K, Waters E and Wright M (1999). Functional health status in six paediatric clinical populations: extending the use of the Child Health Questionnaire for Australian children. Australian Institute of Health and Welfare
  • Boman KK, Viksten J, Kogner P and Samuelsson U (2004). Serious illness in childhood: the different threats of cancer and diabetes from a parent perspective.The Journal of pediatrics, 145(3), p 373-379
  • Schofield J, Ho J and Soran H (2019). Cardiovascular risk in type 1 diabetes mellitus. Diabetes Therapy, p 1-17
  • National Institute for Clinical Excellence (2015). Diabetes (type 1 and type 2) in children and young people: diagnosis and management. NICE
  • Phelan H, Lange K, Cengiz E, Gallego P, Majaliwa E, Pelicand J, Smart C and Hofer SE (2018). ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes education in children and adolescents. Pediatric diabetes, 19, p 75-83
  • Delahanty Linda M, Nathan David M, Lachin John M, Hu Frank B, Cleary Patricia A, Ziegler Georgia K, Wylie-Rosett Judith, Wexler Deborah J (2009). Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial. The American journal of clinical nutrition, 89(2), p 518-524
  • Smart CE, Annan F, Higgins LA, Jelleryd E, Lopez M and Acerini CL (2018). ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes
  • Hanson F and Brown J (2019). Low-carbohydrate diets for children and young people with type 1 diabetes: Unpicking the evidence. Journal of Diabetes Nursing, 23(5)
  • Newfield RS, Cohen D, Capparelli EV and Shragg P (2009). Rapid weight gain in children soon after diagnosis of type 1 diabetes: is there room for concern? Pediatric diabetes, 10(5), p 310-315
  • Nichols TE, Damiano SR, Gregg K, Wertheim EH and Paxton SJ (2018). Psychological predictors of body image attitudes and concerns in young children. Body image, 27, p 10-20
  • Troncone A, Cascella C, Chianese A, Zanfardino A, Piscopo A, Borriello A, Casaburo F, del Giudice EM and Iafusco D (2020). Body Image Problems and Disordered Eating Behaviors in Italian Adolescents with and without Type 1 Diabetes: An Examination with a Gender-Specific Body Image Measure. Frontiers in Psychology, 11, p 2547
  • American Diabetes Association (2019). Diabetes Technology: Standards of Medical Care in Diabetes. ADA
  • Sherr JL, Hermann JM, Campbell F, Foster NC, Hofer SE, Allgrove J, Maahs DM, Kapellen TM, Holman N, Tamborlane WV and Holl RW (2016). Use of insulin pump therapy in children and adolescents with type 1 diabetes and its impact on metabolic control: comparison of results from three large, transatlantic paediatric registries. Diabetologia, 59(1), p 87-91
  • Allen N and Gupta A (2019). Current diabetes technology: striving for the artificial pancreas. Diagnostics, 9(1), p 31
  • Benhamou PY, Franc S, Reznik Y, Thivolet C, Schaepelynck P, Renard E, Guerci B, Chaillous L, Lukas-Croisier C, Jeandidier N and Hanaire H (2019). Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. The Lancet Digital Health, 1(1), p e17-e25
  • Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, Brazg RL, Ilany J, Slover RH, Anderson SM and Bergenstal RM (2017). Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes technology & therapeutics, 19(3), p 155-163
  • Tauschmann M and Hovorka R (2018). Technology in the management of type 1 diabetes mellitus – current status and future prospects. Nature Reviews Endocrinology, 14(8), p 464-475
  • Dassau E, Pinsker JE, Kudva YC, Brown SA, Gondhalekar R, Dalla Man C, Patek S, Schiavon M, Dadlani V, Dasanayake I and Church MM (2017). Twelve-week 24/7 ambulatory artificial pancreas with weekly adaptation of insulin delivery settings: effect on hemoglobin A1c and hypoglycemia. Diabetes Care, 40(12), p 1719-1726
  • DIABETES UK (2020). Online. Available at: https://www.diabetes.org.uk/guide-to-diabetes/diabetes-technology/diy-looping [Accessed 12/10/2020]
  • Diabetes UK (2020). Online. Available at: https://www.diabetes.org.uk/professionals/position-statements-reports/do-it-yourself-closed-loop [Accessed 12/10/2020]
  • Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TW, Lernmark Å, Muller S, Pugliese A, Roep BO and Greenbaum CJ (2017). Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia, 60(11), p 2139-2147




  1. https://www.cqc.org.uk/guidance-providers/adult-social-care/dysphagia-thickeners <accessed 21/07/20>
  1. https://www.fresenius-kabi.com/gb/products/fresubin-clear-thickener <accessed 21/07/20>
  1. https://www.nutriciahcp.com/uploadedFiles/Main/Sub_sites/ONS_Site/ons/shop/NUTILIS_CLEAR_2(4).pdf <accessed 21/07/20>
  1. https://www.nestlehealthscience.co.uk/brands/resource-dysphagia/resource-thickenup-clear <accessed 21/07/20>
  1. https://nualtra.com/products/swalloweze-clear <accessed 21/07/20>
  1. http://www.food-info.net/uk/index.htm <accessed 21/07/20>
  1. http://polyols-eu.org/polyols/erythritol <accessed 21/07/20>
  1. https://iddsi.org/framework/ <accessed 21/07/20>
  1. Sharpe K, Ward L, Cichero J, Sopade P, Halley P. Thickened fluids and water absorption in rats and humans. Dysphagia. 2007, 22: 193-203. 10.1007/s00455-006-9072-1
  1. https://myemail.constantcontact.com/January-2020-e-bite--flow-test--syringe-availability--IDDSI-around-the-world--and-more---.html?soid=1124597382375&aid=xgHmC1Gt2tE
  1. https://iddsi.org/wp-content/uploads/2016/10/FAQs_IDDSI_TESTING-DRINKS_exactly-8-or-4-mL_10-October_final.pdf <accessed 21/07/20>



  • Hashimoto H (1912). Zur Kenntnis der lymphomatösen Veränderung der Schilddrüse (Struma lymphomatosa). Archiv für Klinische Chirurgie (in German) 97, 219-248
  • Soh SB, Aw TC. Laboratory Testing in Thyroid Conditions - Pitfalls and Clinical Utility. Ann Lab Med. 2019; 39(1): 3-14. doi:10.3343/alm.2019.39.1.3
  • Hu S and Rayman MP (2017). Multiple Nutritional Factors and the Risk of Hashimoto’s Thyroiditis. Thyroid, 27(5), 597-610. doi:10.1089/thy.2016.0635
  • Mincer DL, Jialal I. Hashimoto Thyroiditis. In: StatPearls Publishing, Treasure Island (FL); 2019
  • Shahid MA, Ashraf MA, Sharma S. Physiology, Thyroid Hormone. [Updated 2020 May 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan
  • Sakr MF (2020). Thyroid Disease. doi:10.1007/978-3-030-48775-1
  • Rayman MP (2018). Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proceedings of the Nutrition Society, 1-11. doi:10.1017/s0029665118001192
  • Pennington JA, Young B. Iron, zinc, copper, manganese, selenium, and iodine in foods from the United States Total Diet Study. J Food Compost Anal. 1990 June; 3(2): 166-184
  • Chiesa F. Thyroid disease in Northern Italian children born around the time of the Chernobyl nuclear accident. Ann Oncol. 2004; 15: 1842-6
  • IGN Iodine Global Network. IGN http://www.ign.org/ (2018)
  • Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM and Okosieme OE (2018). Global epidemiology of hyperthyroidism and hypothyroidism. Nature Reviews Endocrinology, 14(5), 301-316. doi:10.1038/nrendo.2018.18
  • Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014; 94(3): 739-777. doi:10.1152/physrev.00039.2013
  • Milman N, Jonsson L, Dyre P, Pedersen PL, Larsen LG. (2014) Ferrous bisglycinate 25mg iron is as effective as ferrous sulfate 50mg iron in the prophylaxis of iron deficiency and anemia during pregnancy in a randomised trial. J Perinat Med 42: 197-206
  • Nekrasova TA, Strongin LG, Ledentsova OV (2013). Hematological disturbances in subclinical hypothyroidism and their dynamics during substitution therapy. Klin Med (Mosk) 91: 29-33
  • Rayman MP (2012) Selenium and human health. Lancet 379: 1256-1268
  • Wichman JWK, Bonnema SJ, Hegedus L (2016). Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: A systematic review and meta-analysis. Thyroid
  • Soppi E (2015). Iron deficiency is the main cause of symptom persistence in patients treated for hypothyroidism 15th International Thyroid Congress. Vol 25 (suppl 1). Thyroid, Orlando, Florida, A-74
  • Cinemre H, Bilir C, Gokosmanoglu F, Bahcebasi T (2009). Hematologic effects of levothyroxine in iron-deficient subclinical hypothyroid patients: a randomised, double-blind controlled study. J Clin Endocrinol Metab 94: 151-156
  • Ravanbod M, Asadipooya K, Kalantarhormozi M, Nabipour I, Omrani GR (2013). Treatment of iron-deficiency anemia in patients with subclinical hypothyroidism. Am J Med 126: 420-424
  • Štefanić M and Tokić S (2019). Serum 25-hydoxyvitamin D concentrations in relation to Hashimoto’s thyroiditis: a systematic review, meta-analysis and meta-regression of observational studies. European Journal of Nutrition. doi:10.1007/s00394-019-01991-w
  • Mantovani A, Nascimbeni F, Lonardo A, Zoppini G, Bonora E, Mantzoros CS and Targher G (2018). Association Between Primary Hypothyroidism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Thyroid. doi:10.1089/thy.2018.0257



  • Schoenaker, , Jackson, C., Rowlands, J., and Mishra, G. (2014) “Socioeconomic position, lifestyle factors and age at natural menopause: a systematic review and meta-analyses of studies across six continents”. International Journal of Epidemiology (43), 1542–1562
  • Keenan, N., Mark, S., Fugh-Berman, A., Browne, D., Kaczmarczyk, J., and Hunter, C. (2003) “Severity of menopausal symptoms and use of both conventional and complementary/alternative therapies”. Menopause (6), 507–515
  • Weiss, R. (2020) The Menopause Cafe [online] available from <https://www.menopausecafe.net> [31st July 2020]
  • Thebe, A. (2020) Menopocalypse: How I Learned to Thrive During Menopause and How You Can Too Greystone Books Ltd: Canada
  • Moser, S., Chodick, G., Bar-On, S., and Varda Shalev. (2020) “Healthcare Utilization and Prevalence of Symptoms in Women with Menopause: A Real-World Analysis” International Journal of Women’s Health, 445-454
  • Mauvais-Jarvis, F., Clegg, D., and Hevener, A. (2013) “The role of estrogens in control of energy balance and glucose homeostasis” Endocrine Review (3), 309-338
  • Bondarev, D., Laakkonen, E., Finni, T., Kokko, K., Kujala, U., Aukee, P., Kovanen, V., Sipilä, S. (2018) Physical performance in relation to menopause status and physical activity”. 25 (12), 1432-1441 
  • Chopra, S., Aparna Sharma, K., Ranjan, P., Malhotra, A., Vikram, N., and Kumari, A. (2019) “Weight Management Module for Perimenopausal Women: A Practical Guide for Gynecologists.” Journal of Mid-Life Health (4), 165-172
  • Whiteman, M., Staropoli, C., Langenberg, P., McCarter, R., Kjerulff, K., and Flaws, J. (2003) Smoking, body mass, and hot flashes in midlife women”. Obstetrics and Gynaecology (2), 264-272
  • Freeman, E., Sammel, M., and Sanders, R. (2014) “Risk of long-term hot flashes after natural menopause: evidence from the Penn Ovarian Aging Study cohort”. Menopause. 21, 924–932
  • Zhu D, Chung HF, Pandeya N, Dobson AJ, Kuh D, Crawford SL, Gold EB, Avis NE, Giles GG, Bruinsma F, Adami HO, Weiderpass E, Greenwood DC, Cade JE, Mitchell ES, Woods NF, Brunner EJ, Simonsen MK, Mishra GD. (2018) “Body mass index and age at natural menopause: an international pooled analysis of 11 prospective studies”. European Journal of Epidemiology, (8), 699-710
  • T, Appleby, P., Reeves, G., Roddam, A., Dorgan, J., Longcope, C., Stanczyk, F., Stephenson, H., Falk, R., Miller, R., Schatzkin, A., Allen, D., Fentiman, I., Key, T., Wang, D., Dowsett, M., Thomas, H., Hankinson, S., Toniolo, P., Akhmedkhanov, A., Koenig, K., Shore, R., Zeleniuch-Jacquotte, A., Berrino, F., Muti, P., Micheli, A., Krogh, V., Sieri, S., Pala, V., Venturelli, E., Secreto, G., Barrett-Connor, E., Laughlin, G., Kabuto, M., Akiba, S., Stevens, R., Neriishi, K., Land, C., Cauley, J., Kuller, L., Cummings, S., Helzlsouer, K., Alberg, A., Bush, T., Comstock, G., Gordon, G., Miller, S., and Longcope, C. (2003) “Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women”. Journal of the National Cancer Institute (20), 9
  • Onstad, M., Schmandt, R., and Lu, K. (2016) “Addressing the Role of Obesity in Endometrial Cancer Risk, Prevention, and Treatment” Journal of Clinical Oncology (35): 4225–4230.
  • Ruiz-Cabello, P., Coll-Risco, I., Acosta-Manzano, P., Borges-Cosic, M., Gallo-Vallejo, F., Aranda, P., Lopez-Jurado, m., and Aparicio, V. (2017) “Influence of the degree of adherence to the Mediterranean diet on the cardiometabolic risk in peri and menopausal women. The Flamenco project.” Nutrition, Metabolism and Cardiovascular Diseases (3), 217-224
  • Schmitt, E., Nahas-Neto, J., Bueloni-Dias F. Poloni, P., Orsatti, c., and Nahas, E. (2018) “Vitamin D deficiency is associated with metabolic syndrome in postmenopausal women. Maturitas (107), 97–102
  • Boucher, B. (2012) “Is vitamin D status relevant to metabolic syndrome?” Dermatoendocrinology (2): 212–224
  • European Menopause and Andropause Society (2020) “EMAS position statement: menopause symptom management in women with dyslipidemias”. Maturitas. (135), 82-88
  • Huang, H., Guo J., Chen, Q., Chen, X., Yang, Y., Zhang, W., Liu, Y., Chen, X., and Yang, D. (2019) “The Synergistic Effects of Vitamin D and Estradiol Deficiency on Metabolic Syndrome in Chinese Postmenopausal Women”. Menopause (10), 1171-1177.
  • Ferreira, P., Cangussu, L., Bueloni-Dias, F., Oesatti, C., Schmitt, E., Nahas-Neto, J., and Nahas, E. (2020) “Vitamin D supplementation improves the metabolic syndrome risk profile in postmenopausal women”. Climacteric (23), 24–31
  • Giustina, A., Adler, R., Binklety N., Bollerslev, J., Bouillon, R., Dawson-Hughes, B., Ebeling, P., Feldman, D., Formenti, A., Lazaretti-Castro, M., Marcocci, C., Rizzoli, R., Sempos, C., and Bilezikian, J. (2020) “Consensus statement from 2nd international conference on controversies in vitamin D” Reviews in Endocrine and Metabolic Disorders (21), 89-116
  • Barrionuevo, P., Kapoor, E., Asi, N., Alahdab, F., Mohammed, K., Benkhadra, K., Almasri, J, Farah, W., Sarigianni, M., Muthusamy, K., Al Nofal, A., Haydour, Q., Wang, Z., and Murad, M. (2019) “Efficacy of Pharmacological Therapies for the Prevention of Fractures in Postmenopausal Women: A Network Meta-Analysis” The Journal of Clinical Endocrinology & Metabolism (104), 1623-1630
  • Zhuang, H., Wang, P., Li, Y., Lin, J., Yao, X., and Xu, H. (2020) “Analysis of related factors of brittle hip fracture in postmenopausal women with osteoporosis” Orthopaedic Surgery (1), 194-198
  • British Dietetic Association (2020) Menopause and Diet: Food Fact Sheet [online]
  • <https://www.bda.uk.com/resource/menopause-diet.html> [3/8/2020]
  • Patisaul, H. (2017) “Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours”. Proceedings of the Nutrition Society (2), 130-144
  • Flor-Alemany, M., Marin-Jimenez, N., Coll-Risco, I., Aranda, P., and Aparicio, V. (2020) “Influence of dietary habits and Mediterranean diet adherence on menopausal symptoms. The FLAMENCO project”. The Journal of the North American Menopause Society. (9) 1015-1021
  • O’Neill, S., and Eden, J. (2020) “The pathophysiology and therapy of menopausal symptoms.” Obstetrics, Gynaecology and Reproductive Medicine (6), 175-183
  • Sánchez-Rodríguez, M., Zacarías-Flores, M., Arronte-Rosales, A,Correa-Muñoz, E and Mendoza-Núñez, V. (2012) “Menopause as risk factor for oxidative stress” Menopause, 19 (3), 361-367
  • Sotoudeh, G., and Abshirini, M. (2020) Chapter 12 - Antioxidant Capacity and Menopausal Symptoms. In: Preedy, V, and Patel, V. Aging: Oxidative Stress and Dietary Antioxidants. Academic Press.
  • Zhao-min, Liu., Suzanne, Ho., Xie, Y., Chen, Y., Chen, Y., Chen, B., Wong, S., Yeung-shan, M., Chan, D., Wong, C., He, Q., Lap, T., Woo, J. (2016) “Associations between dietary patterns and psychological factors: a cross-sectional study among Chinese postmenopausal women” Menopause, 1294-1302



  • Koo WW, Warren L. Calcium and bone health in infants. Neonatal Netw. 2003; 22(5): 23-37
  • Bates B, Lennox A, Prentice A, Bates CJ, Page P, Nicholson S et al. National diet and nutrition survey: Results from years 1, 2, 3 and 4 (combined) of the rolling programme (2008/2009–2011/2012): A survey carried out on behalf of Public Health England and the Food Standards Agency: Public Health England; 2014
  • Cribb VL, Northstone K, Hopkins D, Emmett PM. Sources of vitamin D and calcium in the diets of preschool children in the UK and the theoretical effect of food fortification. J Hum Nutr Diet. 2015; 28(6): 583-92
  • Greer FR, Krebs NF. Optimising bone health and calcium intakes of infants, children and adolescents. Paediatrics. 2006;117(2): 578-85
  • Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009; 51 Suppl 1: S5-17
  • Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011; 26(8): 1729-39
  • Hacker AN, Fung EB, King JC. Role of calcium during pregnancy: maternal and fetal needs. Nutr Rev. 2012; 70(7): 397-409
  • Cho GJ, Shin JH, Yi KW, Park HT, Kim T, Hur JY et al. Adolescent pregnancy is associated with osteoporosis in postmenopausal women. Menopause. 2012; 19(4): 456-60
  • United Nations DoEaSA, Population division. World Population Ageing Highlights. ST/ESA/SERA/4302019
  • Weinstein SL. The Burden of Musculoskeletal Conditions. J Bone Joint Surg Am. 2016; 98(16): 1331
  • Santos L, Elliott-Sale KJ, Sale C. Exercise and bone health across the lifespan. Biogerontology. 2017; 18(6): 931-46
  • Iuliano-Burns S, Woods J, King K, Ghasem ZA, Wang X-F, Wang Q et al. A dairy-based protein, calcium and vitamin D supplement reduces falls and femoral neck bone loss in aged care residents: a cluster randomised trial. Journal of aging research and clinical practice. 2012; 1(2): 141-6
  • Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016; 27(4): 1281-386
  • Baxter-Jones AD, Kontulainen SA, Faulkner RA, Bailey DA. A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone. 2008; 43(6): 1101-7
  • Boreham CA, McKay HA. Physical activity in childhood and bone health. Br J Sports Med. 2011; 45(11): 877-9
  • Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in premenopausal women: a meta-analysis of randomised controlled trials. Int J Endocrinol. 2013; 2013: 741639
  • Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G. Effects of training on bone mass in older adults: a systematic review. Sports Med. 2012; 42(4): 301-25
  • Allison SJ, Poole KE, Treece GM, Gee AH, Tonkin C, Rennie WJ et al. The Influence of High-Impact Exercise on Cortical and Trabecular Bone Mineral Content and 3D Distribution Across the Proximal Femur in Older Men: A Randomised Controlled Unilateral Intervention. J Bone Miner Res. 2015; 30(9): 1709-16
  • Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomised controlled trials. Age (Dordr). 2012; 34(6): 1493-515
  • Uday S, Högler W. Nutritional Rickets and Osteomalacia in the Twenty-first Century: Revised Concepts, Public Health, and Prevention Strategies. Curr Osteoporos Rep. 2017; 15(4): 293-302
  • Goldacre M, Hall N, Yeates DGR. Hospitalisation for children with rickets in England: a historical perspective. The Lancet. 2014; 383(9917): 597-8
  • Vitamin D Recommendations 2020. https://www.nhs.uk/conditions/vitamins-and-minerals/vitamin-d/
  • Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem. 2013; 28(4): 314-28
  • Eller-Vainicher C, Bassotti A, Imeraj A, Cairoli E, Ulivieri FM, Cortini F et al. Bone involvement in adult patients affected with Ehlers-Danlos syndrome. Osteoporos Int. 2016; 27(8): 2525-31
  • Fikree A, Chelimsky G, Collins H, Kovacic K, Aziz Q. Gastrointestinal involvement in the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017; 175(1): 181-7
  • Sakhaee K, Bhuket T, Adams-Huet B, Rao DS. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Ther. 1999; 6(6): 313-21
  • Li K, Wang X-F, Li D-Y, Chen Y-C, Zhao L-J, Liu X-G et al. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging. 2018; 13: 2443-52
  • Lamy O, Burckhardt P. Calcium revisited: part II calcium supplements and their effects. Bonekey Rep. 2014; 3: 579



  • van Spronsen F et al (2017). Key European guidelines for the diagnosis and management of patients with phenylketonuria. The Lancet Diabetes and Endocrinology. Vol 5, Issue 9, September 2017, p 743-756
  • Evans S. Development of national consensus statements on food labelling interpretation and protein allocation in a low phenylalanine diet for PKU. Orphanet Journal of Rare Diseases (2019); 14:2
  • Ford S, O’Driscoll M, MacDonald A. Living with Phenylketonuria: Lessons from the PKU community. Mol Genet Metab Reports. 2018; 17(August): 57-63. doi:10.1016/j.ymgmr.2018.10.002
  • MacDonald A, Smith T, de Silva S et al. The personal burden for caregivers of children with phenylketonuria: A cross-sectional study investigating time burden and costs in the UK. Molecular Genetics and Metabolism Reports 9 (2016) 1-5
  • Palermo L et al. Cognitive outcomes in early-treated adults with phenylketonuria (PKU): A comprehensive picture across domains. Neuropsychology. 2017; 31(3): 255-267
  • Riva MA1, Madotto F, Turato M, Salvatici E, Indovina S, Giovannini M, Riva E, Cesana G (2017). Work activity and phenylalanine levels in a population of young adults with classic PKU. Med Lav. 2017 Apr 21; 108(2): 118-122



  • van Bokhorst-de van der Schueren MA, van Leeuwen PA, Sauerwein HP et al (1997). Assessment of malnutrition parameters in head and neck cancer and their relation to postoperative complications. Head Neck 19(5): 419-25
  • Durkin MT, Mercer KG, McNulty MF, et al (1999). Vascular surgical society of Great Britain and Ireland: contribution of malnutrition to postoperative morbidity in vascular surgical patients. Br J Surg 86(5): 702
  • NICE guideline [NG180]. Perioperative care in adults. Published date: 19 August 2020. https://www.nice.org.uk/guidance/ng180/chapter/Recommendations#enhanced-recovery-programmes
  • Weimann A, Braga M, Harsanyi L et al (2006). ESPEN Guidelines on Enteral Nutrition: Surgery including Organ Transplantation. Clin Nutr 25.224-244
  • The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group (1991). Perioperative total parenteral nutrition in surgical patients. N Engl J Med; 325:525e32
  • Weimann A, Braga M, Carli F et al. ESPEN guideline: Clinical nutrition in surgery. https://www.espen.org/files/ESPEN-guideline_Clinical-nutrition-in-surgery.pdf
  • Elia M, Russell CA (eds) (2009). Combating malnutrition; recommendations for action. A report from the Advisory Group on Malnutrition, led by BAPEN. Redditch: BAPEN
  • BAPEN Quality Group (2010) Malnutrition Matters - Meeting Quality Standards in Nutritional Care: A Toolkit for Commissioners and Providers in England bapen.org.uk/pdfs/toolkit-for-commissioners.pdf (Accessed: October 2016)
  • Evans WJ (2010). Skeletal muscle loss: cachexia, sarcopenia and inactivity. Am J Clin Nutr 91(4):1123S-1127S
  • Tyldesley S, Sheehan F, Munk P et al (1979). Prediction of operative morbidity and mortality by preoperative nutritional assessment. Surg Forum; 30:80e2
  • Fried L, Tangen CM, Walston J et al (2001). Frailty in older adults: Evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56: M134-M135
  • Van den Berghe G, Wouters P, Weekers F et al (2001). Intensive insulin therapy in the critically ill patients. N Engl J Med. 345: 1359-67
  • Zaloga GP (1999). Early enteral nutritional support improves outcome: hypothesis or fact? Crit Care Med 27: 259-61
  • Lewis SJ, Egger M, Sylvester PA, Thomas S (2001). Early enteral feeding versus ‘nil by mouth’ after gastrointestinal surgery: systematic review and meta-analysis of controlled trials BMJ 323: 1-5
  • British Association for Parenteral and Enteral Nutrition (BAPEN). Administering drugs via enteral feeding tubes: a practical guide. BAPEN.org.uk/pdfs/d_and_e/de_pract_guide.pdf (Accessed: Sept 2016)
  • Desborough JP (2000). The stress response to trauma and surgery. Br J Anaesth 85; 109-17
  • Ljungqvist O, Nygren J, Thorell A (2002). Modulation of post-operative insulin resistance by pre-operative carbohydrate loading. Proc Nutr Soc 61(3): 329-36
  • Kortebein P, Ferrando A, Lombeida J et al (2007). Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297: 1772-1774
  • Russell CA and Elia M (2011). Nutrition screening surveys in hospitals in the UK, 2007-2011. bapen.org.uk/pdfs/nsw/bapen-nsw-uk.pdf (Accessed: Sept 2016)
  • Milne AC, Potter J, Vivanti A, Avenell A (2009). Protein and energy supplementation in elderly people at risk from malnutrition. Cochrane Database Syst Rev 15(2). CD003288
  • Hill GL (1994). Changes in body compositional and outcomes
  • Paddon-Jones D, Sheffield-Moore M, Katsanos CS et al (2006). Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Exp Gerontol 41: 215-219
  • Volpi E, Mittendorfer B, Wolf SE, Wolfe RR (1999). Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am J Physiol Endocrinol 277:E513-E520
  • Symons TB, Sheffield-Moore M, Wolfe RR, Paddon-Jones D (2009). A moderate serving of high-quality protein maximally stimulates skeletal muscle protein synthesis in young and elderly subjects. J Am Diet Assoc 109:1582-1586
  • Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) (2016) Guidelines for the provision and assessment of nutrition support in the critically ill patient. J Parenteral Enteral Nutr 40(2): 159-211
  • Jie B, Jiang ZM, Nolan MT, Zhu SN, Yu K, Kondrup J (2012). Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk. Nutrition. 28(10): 1022-1027
  • Marimuthu K, Varadhan KK, Ljungqvist O, Lobo DN (2012). A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann Surg 255: 1060e8
  • Nygren J, Soop M, Thorell A, Efendic S, Nair KS, Ljungqvist O (1998). Preoperative oral carbohydrate administration reduces ostoperative insulin resistance. Clin Nutr 17(2): 65-71
  • Yuill KA, Richardson RA, Davidson HI, Garden OJ, Parks RW (2005). The administration of an oral carbohydrate-containing fluid prior to major elective upper-gastrointestinal surgery preserves skeletal muscle mass postoperatively - a randomised clinical trial. Clin Nutr 24(1): 32-7
  • Soop M, Nygren J, Thorell A et al (2004). Preoperative oral carbohydrate treatment attenuates endogenous glucose release three days after surgery. Clin Nutr 23: 733-41
  • Soop M, Myrenfors P, Nygren J et al (1998). Preoperative oral carbohydrate intake attenuates metabolic changes immediately after hip replacement. Clinical Nutrition 17(Supp 1): 3-4
  • Svanfeldt M, Thorell A, Hausel J et al (2007). Randomised clinical trial of the effect of preoperative oral carbohydrate treatment on postoperative whole-body protein and glucose kinetics. Br J Surg 94: 1342-50
  • Soop M, Carlson GL, Hopkinson J et al (2004). Randomised clinical trial of the effects of immediate enteral nutrition on metabolic responses to major colorectal surgery in an enhanced recovery protocol. Br J Surg 91: 1138-45
  • Fearon KCH, Ljungqvist O, Von Meyenfeldt M et al (2005). Enhanced recovery after surgery: A consensus review of clinical care for patients undergoing colonic resection. Clin Nutr 245(3); 466-477
  • Arends J, Bachmann P, Baracos V et al (2016). ESPEN guidelines on nutrition in cancer patients. Clin Nutr (2016) 1-38 http://dx.doi.org/10.1016/j.clnu.2016.07.015
  • Moore A (2014). Enhanced perspective: Enhanced recovery programmes should be an integral part of a surgery patients’ care plan both before and after surgery. Health Service Journal. hsj.co.uk