Eating disorders


Diets changing over time


  1. The Guardian (2020). ‘I was too fat’. Boris Johnson launches UK obesity reduction drive. Video. (Online). Available at: Accessed 1st December 2020
  2. Department of Health and Social Care (2020). Policy Paper. Tackling Obesity: empowering adults and children to live healthier lives. London, UK Government. (Online). Available at: Accessed 2nd December 2020
  3. Robinson E, Boyland E, Chisholm A et al (2020). Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite. doi:10.1016/j.appet
  4. Pellegrini M, Ponzo V, Rosato R et al (2020). Changes in Weight and Nutritional Habits in Adults with Obesity during the ‘Lockdown’ Period Caused by the COVID-19 Virus Emergency. Nutrients, 12: 2016
  5. BBC (2020). COVID: How Marcus Rashford’s campaign changed free school meals. (Online). Available at: Accessed 2nd December 2020
  6. Rundle AG, Park Y, Herbstman JB et al (2020). COVID‐19-related School Closings and Risk of Weight Gain Among Children. Obesity, 28: 1008-1009.
  7. NHS Health Scotland (2018). Public Attitudes to reducing levels of overweight and obesity in Scotland. Available online: Accessed 2nd December 2020
  8. NHS (2019). Obesity: Causes. Online. Available at: Accessed 2nd December 2020
  9. Serrano-Fuentes N, Rogers A and Portillo MC (2019). Social network influences and the adoption of obesity-related behaviours in adults: a critical interpretative synthesis review. BMC Public Health, 19: 1178.
  10. Food Standards Agency (2020). The COVID-19 consumer research. (Online). Available at: Accessed 2nd December 2020


  1. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutrition, Prevention & Health 2020; 3:e000085. doi:10.1136/ bmjnph-2020-000085
  2. Gombart AF, Pierre A and Maggini S (2020). A Review of Micronutrients and the Immune System – Working in Harmony to Reduce the Risk of Infection. Nutrients 12, 236; doi:10.3390/nu12010236
  3. Calder Philp (2020). Nutrition, immune function and Covid-19. British Nutrition Foundation (24th November 2020) Accessed 9th December 2020
  4. Wu D, Lewis ED, Pae M and Meydani SN (2019). Nutritional modulation of immune function: analysis of evidence, mechanisms and clinical relevance. Frontiers in immunology, 9, p 3160
  5. Kuroda K, Okumura K, Isogai H and Isogai E (2015). The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Frontiers in oncology, 5, p144
  6. Berry DJ, Hesketh K, Power C and Hyppönen E (2011). Vitamin D status has a linear association with seasonal infections and lung function in British adults. British Journal of Nutrition, 106(9), p 1433-1440
  7. Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA and Goodall EC (2017). Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ, 356
  8. Merzon E, Tworowski D, Gorobovski A, Vinker S, Cohen AG, Green I and Finkel-Morgenstern M (2020). Low Plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. The FEBS Journal 287 p 3693-3702
  9. Dardenne M (2002). Zinc and immune function. European journal of clinical nutrition, 56(3), p S20-S23
  10. Wang L and Song Y (2018). Efficacy of zinc given as an adjunct to the treatment of severe pneumonia: A meta‐analysis of randomised, double blind and placebo‐controlled trials. The Clinical Respiratory Journal, 12(3), p 857-864
  11. Read SA, Obeid S, Ahlenstiel C and Ahlenstiel G (2019). The Role of Zinc in Antiviral Immunity. Adv Nutr 10: 696-710
  12. Broome CS, McArdle F, Kyle JA, Andrews F, Lowe NM, Hart CA, Arthur JR and Jackson MJ (2004). An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. The American journal of clinical nutrition, 80(1), p 154-162
  13. Zhang J, Taylor EW, Bennett K, Saad R and Rayman MP (2020). Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 111, p 1297-1299
  14. Moghaddam A, Heller RA, Sun Q, Seelig J, Cherkezov A, Seibert L, Hackler J, Seemann P, Diegmann J, Pilz M and Bachmann M (2020). Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 12(7), p 2098
  15. Laursen RP, Hojsak I (2018). Probiotics for respiratory tract infections in children attending day care centers: a systematic review. Eur J Pediatr 177: 979-94
  16. Liu S, Hu P, Du X, et al (2013) Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: a meta-analysis of randomixed, placebo-controlled trials. Indian Pediatr; 50: 377-81
  17. Vouloumanou EK, Makris GC, Karageorgopoulos DE et al (2009). Probiotics for the prevention of respiratory tract infections: a systematic review. Int J Antimicrob Agents 2009; 34: 197.e1-197. e10
  18. Wang Y, Li X., Ge T et al (2016). Probiotics for prevention and treatment of respiratory tract infections in children: a systematic review and meta-analysis of randomised controlled trials. Medicine 95 :e4509
  19. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA et al. The American Gut Consortium, Knight R (2018). American Gut: an open platform for citizen science microbiome research. mSystems 3: e00031-18. .00031-18
  20. Rachul C, Marcon AR, Collins B, et al. COVID-19 and ‘immune boosting’ on the internet: a content analysis of Google search results. BMJ Open, 2020; 10:e040989. doi:10.1136/ bmjopen-2020-040989


  1. Bower JE. Nat Rev Clin Oncol. Cancer-related fatigue: Mechanisms, risk factors, and treatments. 2014. doi: 10.1038/nrclinonc.2014.127
  2. Cena H, Chieppa M. Front Immunol. Coronavirus Disease (COVID-19-SARS-CoV-2) and Nutrition? Is Infection in Italy Suggesting a Connection? 2020.
  3. Dantzer R. Brain Behav Immun. Cytokine-induced sickness behaviour: where do we stand? 2001:15:7-24. doi: 10.1006/brbi.2000.0613
  4. Early Symptoms of COVID-19. Accessed December 09 2020.
  5. Junghaenel DU, Christodoulou C, Lai J, Stone AA. J Psych Res. Demographic correlates of fatigue in the US general population: Results from the patient-reported outcomes measurement information system (PROMIS) initiative. 2011: 117-123. 10.1016/j.jpsychores.2011.04.007
  6. Kroenke K, Stump T, Clark DO, Callahan CM, McDonald CJ. Am J Med. Symptoms in hospitalised patients: outcome and satisfaction with care. 1999:107:425-31. doi: 10.1016/s0002-9343(99)00268-5
  7. Leisman D et al. The Lancet. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis and comparison with other inflammatory syndromes. 2020:8:1233-1244. doi:
  8. Smets EM, Garssen B, Bonke B, De Haes JC. J Psychosom Res. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. 1995:38:315-25. doi: 10.1016/0022-3999(94)00125-o.
  9. Townsend L et al. PLoS ONE. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. 2020: 15;1-12.
  10. WHO-China Joint Mission. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020.
  11. Van der Linden D. National Guidance During Recovery from COVID-19. Accessed December 09, 2020.
  12. van’t Leven M, Zielhuis GA, van der Meer JW, Verbeek AL, Bleijenberg G. European Journal of Public Health. Fatigue and chronic fatigue syndrome-like complaints in the general population, 2010:20:251–257.
  13. Zabetakis I, Lordan R, Norton C, Tsoupras A. Nutrients. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. 2020:12:1466. doi:10.3390/nu12051466
  14. Zhang JM. An J. Int Anesthesiol Clin. 2009:45:27-37. doi:10.1097/AIA.0b013e318034194e
  15. Shintaro Hojyo, Mona Uchida, Kumiko Tanaka, Rie Hasebe, Yuki Tanaka, Masaaki Murakami, and Toshio Hirano (2020). How COVID-19 induces cytokine storm with high mortality. Published online 2020 Oct 1. doi:1186/s41232-020-00146-3


  1. Arcelus J, Mitchell AJ, Wales J and Nielsen S (2011). Mortality rates in patients with anorexia nervosa and other eating disorders: a meta-analysis of 36 studies. Archives of general psychiatry, 68(7), 724-731
  2. Byrne S, Wade T, Hay P, Touyz S, Fairburn CG, Treasure J and Crosby RD (2017). A randomised controlled trial of three psychological treatments for anorexia nervosa. Psychological Medicine, 47(16)
  3. Hanlan ME, Griffith J, Patel N and Jaser SS (2013). Eating disorders and disordered eating in Type 1 diabetes: prevalence, screening and treatment options. Current diabetes reports, 13(6), 909-916
  4. Robinson P and Jones WR (2018). MARSIPAN: management of really sick patients with anorexia nervosa. BJ Psych Advances, 24(1), 20-32
  5. Mehanna HM, Moledina J and Travis J (2008). Refeeding syndrome: what it is, and how to prevent and treat it. Bmj, 336(7659), 1495-1498
  6. Sylvester CJ and Forman SF (2008). Clinical practice guidelines for treating restrictive eating disorder patients during medical hospitalisation. Current opinion in pediatrics, 20(4), 390-397


  1. Rehackova L, Araujo-Soares V, Steven S, Adamson A, Taylor R and Sniehotta F (2020). Behaviour change during dietary Type 2 diabetes remission: a longitudinal qualitative evaluation of an intervention using a very low energy diet. Diabetic Medicine, (6), 37
  2. NHS (2019). Very Low-Calorie Diets [online] available from <> [14/10/2020]
  3. Parretti H, Jebb S, Johns D, Lewis A, Christian-Brown A and Aveyard P (2016). Clinical effectiveness of very-low-energy diets in the management of weight loss: a systematic review and meta-analysis of randomised controlled trials. Obesity Review (17), 225-34
  4. Jebb S, Ahern A, Olson A et al (2011).Primary Care Referral to a Commercial Provider for Weight Loss Treatment versus Standard Care: A Randomised Controlled Trial. Lancet 378, 1485-1492
  5. Ahern A, Wheeler G, Aveyard P et al (2017). Extended and standard duration weight loss referrals for adults in primary care (WRAP): a pragmatic randomised controlled trial. Lancet. 389, 2214-2225
  6. Lean M, Leslie W, Barnes A, Brosnahan N, Thom G and McCombie L (2017). Primary care‐led weight management for remission of type 2 diabetes (DiRECT): an open‐label, cluster‐randomised trial. Lancet (391), 541-551
  7. Xin Y, Davies A, Briggs A, McCombie L, Messow C, Grieve E, Leslie W, Taylor E and Lean M (2020). Type 2 diabetes remission: 2 year within-trial and lifetime-horizon cost-effectiveness of the Diabetes Remission Clinical Trial (DiRECT)/Counterweight-Plus Weight Management Programme. Diabetologia (63), 2112-2122
  8. Astbury N, Aveyard P, Nickless A, Hood K, Corfield K, Lowe R and Jebb S (2018). Doctor Referral of Overweight People to Low Energy total diet replacement Treatment (DROPLET): pragmatic randomised controlled trial. British Medical Journal 362-760
  9. Hanison S (2020). The Manchester Diabetes Intermittent and Daily Diet Diabetes App Study (MIDAS)
  10. NHS (n.d.). Low calorie diets to treat obesity and Type 2 diabetes. [online] available from [18/11/2020]
  11. Dombrowski, S., Knittle, K., Avenell, A., Araújo‐Soares, V., and Sniehotta, F. (2014) “Long term maintenance of weight loss with non‐surgical interventions in obese adults: systematic review and meta‐analyses of randomised controlled trials”. British Medical Journal 348-2646
  12. Diabetes UK (2020) Eating Disorders and Diabetes [online] <> [16/10/2020]
  13. Bojsen-Moller, N., Lundsgaard, M., Madsbad, S., Kiens, B,. and Holst, J (2018). “Hepatic insulin clearance in regulation of systemic insulin concentrations-role of carbohydrate and energy availability”. Diabetes. (67), 2129–36.
  14. Goss, A., Gower, B., Soleymani, T., Stewart, M, Pendergrass, M., Lockhart, M., Krantz, O., Dowla, S., Bush, N., Barry, V., and Fontaine, K. (2020) “Effects of weight loss during a very low-carbohydrate diet on specific adipose tissue depots and insulin sensitivity in older adults with obesity: a randomized clinical trial” Nutrition and Metabolism (17), 64
  15. Naude, C., Schoonees, A., Senekal, M., Young, T., Garner, P., and Volmink, J. (2014) “Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: a systematic review and meta-analysis”. PLoS One (9), 10652
  16. Banach, M., Mikhailidis, D., and Mazidi, M. (2020) “Low-carbohydrate diet: forget restriction, replace with balance!” European Heart Journal (9), 1058
  17. British Dietetic Association (2008). “Low-carbohydrate diets for the management of Type 2 diabetes in adults” [online] available from <> [24/11/2020]
  18. Terzikhan, N., Doets, E., and Vonk, N. (2015) “Extensive literature search and review as preparatory work for the evaluation of the essential composition of total diet replacement products for weight control”. European Food Safety Authority Supporting Publications. EN-590
  19. Tay, J., Thompson, C., Luscombe-Marsh, N., Wycherley, T., Noakes, M., Buckley, J., Wittert, G., Yancy, W., and Brinkworth, G. (2018) “Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: A 2-year randomized clinical trial”. Diabetes Obesity and Metabolism. (4), 858-871.
  20. Sainsbury, E., Kizirian, N., Partridge, S., Gill, T., Colagiuri, S., and Gibson A. (2018) “Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta‐analysis”. Diabetes Research and Clinical Practice. (139), 239‐252
  21. Bueno, N., de Melo, I., de Oliveira, S., da Rocha, A. (2013) “Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials”. British Journal of Nutrition. (7), 1178–1187.
  22. Mancini, J., Filion, K., Atallah, R., Eisenberg, M. (2016) “Systematic review of the Mediterranean diet for long-term weight loss”. American Journal of Medicine. (4), 407–415.
  23. Mansoor, N., Vinknes, K., Veierod, M., and Retterstol, K. (2016) “Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials”. British Journal of Nutrition. 115 (3), 466–79.
  24. Tobias DK, Chen M, Manson JE, Ludwig DS, Willett W, Hu FB. Effect of low-fat diet interventions versus other diet interventions on long-term weight change in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinology. 2015;3(12):968–79.
  25. Dong, T., Guo, M., Zhang, P., Sun, G., and Chen, B. (2020) “The effects of low-carbohydrate diets on cardiovascular risk factors: A meta-analysis” PLOS One 1-16
  26. Ebbeling, C., Henry, A., Klein, G., Wong, J., Bielak, L., Steltz, S., Luoto, P., Wolfe, R., Wong, W., and Ludwig, D. (2020) “Effects of a low-carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial” British Medical Journal 363
  27. Morris, E., Aveyard, P., Dyson, P., Noreik, M., Bailey, C., Fox, R., Jerome, D., Tan, G., and Jebb, S. (2020) “A food‐based, low‐energy, low‐carbohydrate diet for people with type 2 diabetes in primary care: A randomized controlled feasibility trial”. Diabetes, Obesity and Metabolism (22), 4
  28. Seidelmann, S., Clagett, B., Cheng, S., Henglin, M., Shah, A., Steffen, L., Folsom, A., Rimm, E., Willett, W., and Solomon S. (2018) “Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis”. Lancet Public Health (419-428)
  29. Gjuladin-Hellon, T., Davies, I., Penson, P., Amiri, R. (2019) “Effects of carbohydrate-restricted diets on low-density lipoprotein cholesterol levels in overweight and obese adults: a systematic review and meta-analysis”. Nutritional Review. (3), 161-180
  30. Lu, M., Wan, Y., Yang, B., Huggins, C., and Li, D. (2018) “Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: a systematic review and meta-analysis of randomised controlled trials”. British Journal of Nutrition. 119 (1), 96-108.
  31. Bhanpuri, N., Hallberg, S., Williams, P., McKenzie, A., Ballard, K., Campbell, W., McCarter, J., Phinney, S., and Volek, J. (2018) “Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: an open label, non-randomized, controlled study”. Cardiovascular Diabetology (1), 56
  32. Oh, R., Gilani, B and Uppaluri, K. (2020) “Low-Carbohydrate Diet” StatPearls Publishing: Campbell University
  33. Bruci, A., Tuccinardi, D., Tozzi, R., Balena, A., Santucci, S., Frontani, R., Mariani, S., Basciani, S., Spera, G., Gnessi, L., Lubrano, C., and Watanabe, M. (2020) “Very Low-Calorie Ketogenic Diet: A Safe and Effective Tool for Weight Loss in Patients with Obesity and Mild Kidney Failure” Nutrients 12 (2), 333
  34. Watanabe, M., Tuccinardi, D., Ernesti, I, Basciani, S., Mariani, S., Genco, A, Manfrini, S., Lubrano, C., and Gnessi, L. (2020) “Scientific Underlying Contraindications to the Ketogenic Diet: An Update” Obesity Reviews (21), 10
  35. Waskiw-Ford M, Hannaian S., Duncan, J., Kato, H., Sawan, S., Locke, M., Kumbhare, D., and Moore, D. (2020) “Leucine-Enriched Essential Amino Acids Improve Recovery from Post-Exercise Muscle Damage Independent of Increases in Integrated Myofibrillar Protein Synthesis in Young Men” Nutrients, 12 (4)
  36. Joshua Z Goldenberg, Andrew Day, Grant D Brinkworth, Junko Sato et al (2020). Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomised trial data. BMJ 2021; 372. doi: (Published 13 January 2021)


  1. Manikam R, Perman JA. Pediatric feeding disorders. J Clin Gastroenterol. 2000; 30(1): 34-46. Reau NR, Senturia YD, Lebailly SA, Christoffel KK. Infant and toddler feeding patterns and problems: normative data and a new direction. Paediatric Practice Research Group. J Dev Behav Pediatr. 1996; 17(3): 149-153
  2. Lau C (2016). Development of infant oral feeding skills: what do we know?. The American journal of clinical nutrition, 103(2), 616S-21S.
  3. Feeding matters (accessed 2020). Paediatric Feeding Disorder: An overview. Accessed 9th December 2020
  4. American Speech Language Hearing Association (accessed 2020). Pediatric Dysphagia ( Accessed 9th December 2020
  5. Royal College of Speech and Language Therapy (Accessed 2020). Infant Dysphagia. rcslt-infant-dysphagia-factsheet.pdf (Accessed 9th December 2020)
  6. Jadcherla S (2016). Dysphagia in the high-risk infant: potential factors and mechanisms. The American journal of clinical nutrition, 103(2), 622S-8S.
  7. Newman LA, Keckley C, Petersen MC and Hamner A (2001). Swallowing function and medical diagnoses in infants suspected of dysphagia. Paediatrics, 108, e106-e106
  8. Digital NHS UK (Accessed 2020). Maternity Services Monthly Statistics June 2019, experimental statistics.
  9. Gale C, Jeyakumaran D, Ougham K, Jawad S, Uthaya S and Modi N (2019). Brain injury occurring during or soon after birth: annual incidence and rates of brain injuries to monitor progress against the national maternity ambition. Neonatal Data Analysis Unit, Imperial College London. (accessed 9th December 2020)
  10. Morton K, Marino LV, Pappachan JV, Darlington AS. Feeding difficulties in young paediatric intensive care survivors: A scoping review. Clin Nutr ESPEN. 2019 Apr;30:1-9. doi: 10.1016/j.clnesp.2019.01.013. Epub 2019 Feb 16. PMID: 30904206
  11. Maurer I, Latal B, Geissmann H, Knirsch W, Bauersfeld U, Balmer C. Prevalence and predictors of later feeding disorders in children who underwent neonatal cardiac surgery for congenital heart disease. Cardiol Young 201121(3): 303e9
  12. Wiechers C, Thjen T, Koos B, Reinert S, Poets CF. Treatment of infants with craniofacial malformations. Arch Dis Child Fetal Neonatal Ed. 2020 May 14: fetalneonatal-2019-317890. doi: 10.1136/archdischild-2019-317890. Epub ahead of print. PMID: 32409560
  13. Pisacane A, Toscano E, Pirri I, Continisio P, Andria G, Zoli B, Strisciuglio P, Concolino D, Piccione M, Giudice CL and Vicari S (2003). Down syndrome and breastfeeding. Acta Pædiatrica, 92: 1479-1481.
  14. Goday PS, Huh SY, Silverman A, Lukens CT, Dodrill P, Cohen SS, Delaney AL, Feuling MB, Noel RJ, Gisel E, Kenzer A, Kessler DB, Kraus de Camargo O, Browne J and Phalen JA (2019). Paediatric Feeding Disorder: Consensus Definition and Conceptual Framework. Journal of Paed Gastroenterol and Nutr, 68(1), 124-129.
  15. Lee JH, Chang YS, Yoo HS, Ahn SY, Seo HJ, Choi SH, Jeon GW, Koo SH, Hwang JH, Park WS (2011). Swallowing dysfunction in very low birth weight infants with oral feeding desaturations. World Journal of Paediatrics 2011; 7(4): 337-343
  16. Marchand V (2009). Nutrition in neurologically impaired children. Paediatr Child Health. 2009 Jul;14(6): 395-401. PMID: 20592978; PMCID: PMC2735385
  17. Thomas J, Marinelli KA and Hennessy M. ABM clinical protocol #16: Breastfeeding the hypotonic infant. Breastfeed Med 2, 112-118 (2007)
  18. Reilly S. et al. ABM clinical protocol #18: Guidelines for breastfeeding infants with cleft lip, cleft palate, or cleft lip and palate, revised 2013. Breastfeed Med 8, 349-353 (2013)
  19. Hay WW Jr. Strategies for feeding the preterm infant. Neonatology. 2008; 94(4): 245-54. doi: 10.1159/000151643. Epub 2008 Oct 2. PMID: 18836284; PMCID: PMC2912291
  20. Meier PP, Johnson TJ, Patel AL and Rossman B (2017). Evidence-Based Methods that Promote Human Milk Feeding of Preterm Infants: An Expert Review. Clinics in perinatology, 44(1), 1-22.
  21. Embleton ND, van den Akker CHP. Protein intakes to optimise outcomes for preterm infants. Semin Perinatol. 2019 Nov; 43(7): 151154. doi: 10.1053/j.semperi.2019.06.002. Epub 2019 Jun 22. PMID: 31303253
  22. Moore ER, Bergman N, Anderson GC, Medley N. Early skin-to-skin contact for mothers and their healthy newborn infants. Cochrane Database Syst Rev. 2016 Nov 25; 11(11): CD003519. doi: 10.1002/14651858. CD003519.pub4. PMID: 27885658; PMCID: PMC6464366
  23. Vazquez-Vazquez A, Dib S, Rougeaux E, Wells JC and Fewtrell MS (2021). The impact of the COVID-19 lockdown on the experiences and feeding practices of new mothers in the UK: Preliminary data from the COVID-19 New Mum Study. Appetite, 156, 104985.
  24. Foster JP, Psaila K, Patterson T. Non-nutritive sucking for increasing physiologic stability and nutrition in preterm infants. Cochrane Database Syst Rev. 2016 Oct 4; 10(10): CD001071. doi: 10.1002/14651858. CD001071.pub3. PMID: 27699765; PMCID: PMC6458048
  25. Fucile S, Gisel E, Lau C (2002). Oral stimulation accelerates the transition from tube to oral feeding in preterm infants. The Journal of Paediatrics, 141(2); 230-236
  26. Bliss (accessed 2020). Weaning your premature baby. (Accessed, 9th December 2020)
  27. National Guideline Alliance (UK). Cerebral palsy in under 25s: assessment and management. London: National Institute for Health and Care Excellence (UK); 2017 Jan. (NICE Guideline, No. 62.) 18, Risk factors for low bone mineral density. Available from:
  28. Gonzalez-Viana E, Dworzynski K, Murphy MS, Peek R. Guideline Committee. Faltering growth in children: summary of NICE guidance. BMJ. 2017 Sep 28; 358: j4219. doi: 10.1136/bmj.j4219. PMID: 28963099
  29. Lefton-Greif MA (2008). Paediatric dysphagia. Physical Medicine and Rehabilitation Clinics of North America, 19, 837-851
  30. Lefton-Greif MA, Carroll JL and Loughlin GM (2006). Long-term follow-up of oropharyngeal dysphagia in children without apparent risk factors. Pediatric Pulmonology, 41, 1040-1048


  1. Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase Genetics Medicine. 2011; 13(8): 697‐707. doi:10.1097/GIM.0b013e3182141b48 Available at:
  2. Williams RA, Mamotte CD, Burnett JR. Phenylketonuria: an inborn error of phenylalanine metabolism. Clinical Biochemistry Review. 2008; 29(1): 31‐41
  3. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010; 376(9750): 1417‐ doi:10.1016/S0140-6736(10)60961-0 Available at:
  4. Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL and Ferreira GC (2015). Phenylketonuria Pathophysiology: on the Role of Metabolic Ageing and disease, 6(5), 390-399.
  5. Blau N. Genetics of Phenylketonuria: Then and Now. Human Mutation. 2016; 37(6): 508‐ doi:10.1002/humu.22980
  6. Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Human Mutation 2007; 28(9): 831‐ doi:10.1002/humu.20526
  7. Lidksy AS, Robson KJ, Thirumalachary C, Barker PE, Ruddle FH, Woo SL. The PKU locus in man is on chromosome 12. American Journal of Human Genetics. 1984; 36(3): 527‐533
  8. Ponzone A, Spada M, Roasio L, Porta F, Mussa A, Ferraris S. Impact of neonatal protein metabolism and nutrition on screening for phenylketonuria. J Pediatr Gastroenterol Nutr. 2008; 46(5): 561‐ doi:10.1097/MPG.0b013e31815eead6 Available at:
  9. Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) Molecular Genetic Metabolism 2011; 104 Suppl:S2‐S9. doi:10.1016/j.ymgme.2011.08.017 Available at:
  10. Niederwieser A, Ponzone A, Curtius HC. Differential diagnosis of tetrahydrobiopterin deficiency. J Inherit Metab Dis. 1985; 8 Suppl 1: 34‐ doi:10.1007/BF01800657
  11. Enns GM, Koch R, Brumm V, Blakely E, Suter R, Jurecki E. Suboptimal outcomes in patients with PKU treated early with diet alone: revisiting the Molecular Genetic Metabolism. 2010; 101(2-3): 99‐109. doi:10.1016/j.ymgme.2010.05.017
  12. Surtees R, Blau N. The neurochemistry of phenylketonuria. European Journal Paediatrics 159, S109-S113 (2000). Available at:
  13. Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP. Brain MRI changes in phenylketonuria. Associations with dietary status. Brain. 1993; 116 ( Pt 4): 811‐ doi:10.1093/brain/116.4.811
  14. Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE. Diffusion- weighted imaging of white matter abnormalities in patients with AJNR Am J Neuroradiol. 2001;22 (8):1583– 1586
  15. Cleary MA, Walter JH, Wraith JE, White F, Tyler K, Jenkins JP. Magnetic resonance imaging in phenylketonuria: reversal of cerebral white matter change. J 1995; 127 (2): 251-255
  16. van Spronsen FJ, de Groot MJ, Hoeksma M, Reijngoud DJ and van Rijn M (2010). Large neutral amino acids in the treatment of PKU: from theory to Journal of inherited metabolic disease, 33(6), 671-676.
  17. Pietz J, Kreis R, Rupp A et al. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999 ;103(8): 1169‐ doi:10.1172/JCI5017
  18. Didycz B and Bik-Multanowski M. Blood phenylalanine instability strongly correlates with anxiety in phenylketonuria. Molecular Genetics and Metabolism 2018: 14: 2
  19. Giovannini M, Verduci E, Salvatici E et al. Phenylketonuria: nutritional advances and challenges. Nutr Metab (Lond) 9, 7 (2012). Available at:
  20. Walter J et al (2002). How practical are recommendations for dietary control in phenylketonuria? The Lancet. 2002; 360 (9326) Available at:
  21. Hansen KE, Ney D. A systematic review of bone mineral density and fractures in J Inherit Metab Dis. 2014; 37(6): 875-80
  22. Couce ML et al. Effects of LC-PUFA Supplementation in Patients with Phenylketonuria: A Systematic Review of Controlled Trials. Nutrients vol. 11,7 6 Jul. 2019, doi:10.3390/nu11071537
  23. Koletzko B, Beblo S, Demmelmair H, Hanebutt FL. Omega-3 LC-PUFA supply and neurological outcomes in children with phenylketonuria (PKU). J Paediatrics Gastroenterology Nutrition. 2009; 48 Suppl 1:S2‐ doi:10.1097/MPG.0b013e3181977399 Available at:
  24. Ilgaz F, Pinto A, Gökmen-Özel H, Rocha JC, van Dam E, Ahring K, Bélanger-Quintana A, Dokoupil K, Karabulut E and MacDonald A (2019). Long-Term Growth in Phenylketonuria: A Systematic Review and Meta- Nutrients, 11(9), 2070.
  25. MacDonald A, van Rijn M, Feillet F et al. Adherence issues in inherited metabolic disorders treated by low natural protein diets. Annual Nutrition Metabolism. 2012; 61(4): 289‐ doi:10.1159/000342256 Available at:
  26. van Wegberg AMJ, MacDonald A, Ahring K et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017; 12(1): Published 2017 Oct 12. doi:10.1186/s13023-017-0685
  27. Rouse B, Azen C, Koch R, Matalon R, Hanley W, de la Cruz F et al. Maternal Phenylketonuria collaborative study (MPKUCS) offspring: facial anomalies, malformations and early neurological sequelae. Am J Med Genet. 1997; 69(1) :89-95
  28. Platt LD, Koch R, Hanley WB, Levy HL, Matalon R, Rouse B et al. The international study of pregnancy outcome in women with maternal phenylketonuria: report of a 12-year study. Am J Obstet Gynecol. 2000; 182(2): 326-33
  29. Levy HL, Ghavami M. Maternal phenylketonuria: a metabolic teratogen. Teratology 1996 Mar; 53(3): 176-84. doi: 10.1002/(SICI)1096-9926(199603)53:3
  30. Declercq ER, Sakala C, Corry MP, Applebaum S, Herrlich (2014). Major Survey Findings of Listening to Mothers(SM) III: Pregnancy and Birth: Report of the Third National US Survey of Women's Childbearing Experiences. Journal of Prenatal Education ;23(1): 9‐16. doi:10.1891/1058-1243.23.1.9 Available at:
  31. Suzanne Ford et al (2018). Reproductive experience of women living with phenylketonuria. Molecular Genetics and Metabolism Reports vol 17:64-68. Available at:
  32. Channon S et al (2007). Effects of dietary management of phenylketonuria on long-term cognitive outcome. Archives of Disease in Childhood. 92(3): 213-8
  33. Moyle J et al (2007). Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychology Review. 17(2): 91-101
  34. Romani C et al (2017). The impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: Effects across tasks and developmental stages. 31(3): 242
  35. ten Hoedt AE et al (2011). High phenylalanine levels directly affect mood and sustained attention in adults with phenylketonuria: a randomised, double-blind, placebo-controlled, crossover trial. Journal of Inherited Metabolic Disease. 34(1): 165-71
  36. Bilder DA et al (2013). Psychiatric Symptoms in adults with Phenylketonuria. Molecular Genetics and Metabolism. 108(3): 155-60
  37. Huijbregts S et al (2002). Sustained attention and inhibition of cognitive interference in treated phenylketonuria: associations with concurrent and lifetime phenylalanine concentrations. 40(1): 7-15
  38. Weglage J et al (2013). Neurocognitive Functioning in Adults with Phenylketonuria: Results of a Long-Term Study.  Molecular Genetics and Metabolism. 110 :S44-S8


  1. van Spronsen F et al (2017). Key European guidelines for the diagnosis and management of patients with phenylketonuria. The Lancet Diabetes and Endocrinology Vol 5, Issue 9, September 2017, p 743-756
  2. van Wegberg et al; The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet Journal of Rare Diseases (2017). 12:162
  3. Ford S, O'Driscoll M, MacDonald A. Living with Phenylketonuria: Lessons from the PKU community. Mol Genet Metab Rep. 2018; 17: 57-63. Published 2018 Oct 18. doi:10.1016/j.ymgmr.2018.10.00
  4. Wood G, Evans S, Pointon-Bell K, Rocha JC, Macdonald A. Special Low-Protein Foods in the UK: An Examination of Their Macronutrient Composition in Comparison to Regular Foods. Nutrients 2020, 12, 1893
  5. Daly A et al. A 3-year longitudinal prospective review examining the dietary profile and contribution made by special low-protein foods to energy and macronutrient intake in children with phenylketonuria. Nutrients 2020, 12, 3153; doi:10.3390/nu12103153
  6. Vardy ER et al. Phenylketonuria, comorbidity, and ageing: A review; J Inherit Metab Dis. 2019; 1-12
  7. Kilpatrick NM, Awang H, Wilcken B, Christodonoulou J. The implications of Phenylketonuria on oral health. Pediatr Dent. 1999; 21(7): 433-438
  8. Kahrilas PJ, Talley NJ, Grover S. Clinical manifestations and diagnosis of gastroesophageal reflux in adults. UpToDate, Basow, DS (Ed) UpToDate, Waltham, MA. 2008
  9. Kahrilas PJ. Medical management of gastroesophageal reflux disease in adults. UpToDate. 2013.
  10. Burton BK, Jones KB, Cederbaum S et al. Prevalence of comorbid conditions among adult patients diagnosed with phenylketonuria. Mol Genet Metab. 2018; 125(3): 228-234. doi:10.1016/j.ymgme.2018.09.006
  11. Verduci E, Carbone MT, Borghi E, Ottaviano E, Burlina A, Biasucci G. Nutrition, microbiota and role of gut–brain axis in subjects with phenylketonuria (PKU): a review. Nutrients 2020, 12, 3319
  12. De Oliveira FP, Mendes RH, Dobbler PT, Mai V, Pylro VS, Waugh SG, Vairo F, Refosco LF, Roesch LFW, Schwartz IVD. Phenylketonuria and gut microbiota: a controlled study based on next-generation sequencing. PLoS ONE. 2016, 11, e0157513
  13. Verduci E, Moretti F, Bassanini G, Banderali G, Rovelli V, Casiraghi MC, Morace G, Borgo F, Borghi E. Phenylketonuric diet negatively impacts on butyrate production. Nutr Metab Cardiovasc Dis 2018, 28, 385-392
  14. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomised controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015, 48, 258-264
  15. Evans S et al. Development of national consensus statements on food labelling interpretation and protein allocation in a low phenylalanine diet for PKU; Orphanet Journal of Rare Diseases (2019); 14:2


  1. Cambridge Dictionary (2020). Mindfulness. Available at:, accessed: 19th January 2021
  2. Fung T, Long MW, Hung P and Cheung LWY (2016). An Expanded Model for Mindful Eating for Health Promotion and Sustainability: Issues and Challenges for Dietetics Practice. Journal of the Academy of Nutrition and Dietetics, 116 (7), p 1081-1086
  3. Dressler H and Smith C (2015). Depression Affects Emotional Eating and Dietary Intake and Is Related to Food Insecurity in a Group of Multiethnic, Low-income Women. Journal of Hunger and Environmental Nutrition, 10 (4), p 496-510
  4. Gillen M (2015). Associations between positive body image and indicators of men's and women's mental and physical health. Body Image, 10(1), p 67-74
  5. Mental Health Foundation (2019). Mental Health Statistics: Men and Women. Available at: accessed: 19th January 2021
  6. Mind (2020). Mental Health Facts and Statistics. Available at: accessed: 19th June 2021
  7. Harvard Medical school (2015). Nutritional Psychiatry: Your Brain on Food. Available at:, accessed: 19th January 2021
  8. NHS (2020). Statistics on Obesity, Physical Activity and Diet, England, 2020. Available at: Accessed: 19th January 2021.
  9. Breathe Therapies (2018). Eating Disorder Statistics. Available at: Accessed: 19th January 2021.
  10. Positive Psychology (2020). History of Mindfulness: From East to West and Religion to Science. Available at:, Accessed: 19th January 2021
  11. B Nelson J (2017). Mindful Eating: The Art of Presence While You Eat, American Diabetes Association, 30(3), p 171-174
  12. Khan Z and Zadeh ZF (2014). Mindful Eating and Its Relationship with Mental Well-Being – Procedia. Social and Behavioural Sciences, 159 (1), p 69-73
  13. Warren JM, Smith N and Ashwell M (2017). A structured Literature Review on the Role of Mindfulness, Mindful Eating and Intuitive Eating In Changing Eating Behaviours: Effectiveness and Associated Potential Mechanisms. Nutrition Research Reviews, 30 (2), 272-283
  14. Jordan CH, Wang W, Donatoni L and Meier BP (2014). Mindful Eating: Trait and State Mindfulness Predict Healthier Eating Behaviour, Personality and Individual Differences, 68(1), p 107-111
  15. Katterman SN, Kleinman BM, Hood MM, Nackers LM and Corsica JA (2014). Mindfulness meditation as an intervention for binge eating, emotional eating and weight loss: A systematic review, Eating Behaviours, 15(2), p 197-204
  16. NHS (2018). Mindfulness. Available at: Accessed: 20th January 2021
  17. O’Reilly GA, Cook L, Spruijt-Metz D and Black DS (2014). Mindfulness-based interventions for obesity-related eating behaviours: a literature review. HHS public access, 15(6), p 453-461
  18. Kristeller JA, Baer R and Quillian-Wolever R (2006). Mindfulness- Based Approaches to Eating Disorders. New York: Guilford Press, 4(1), p 76-91
  19. Mindful Me (2020). Mindfulness Based Cognitive Therapy. Available at:, accessed: 20th January 2021
  20. Masuda A and Hill ML (2013). Mindfulness as Therapy for Disordered Eating: A Systematic Review. Neuropsychiatry, 3(4), p 433-447
  21. Endocrineweb (2020). Hormone Imbalances and Depression. Available at: Accessed: 20th January 2021
  22. Mindfulness4u (2017). Mindfulness-based eating awareness training. Available at: Accessed: 20th January 2021
  23. Sipe W and Eisendrath S (2012). Mindfulness-Based Cognitive Behavioural Therapy: Theory and Practice, CanjPsychiatry, 57(2), p 63-69
  24. Oraki M and Ghorbani M (2019). The Effectiveness of Mindfulness- Based Eating Awareness Training (MB-EAT) on Perceived Stress and Body Mass Index in Overweight Women. International Journal of Applied Behavioural Sciences, 6(3), p 1-8
  25. The American Heart Association (2020). Mindful Eating Infographic available at: Accessed: 22nd January 2021
  26. Albers S (2008). Eat, drink and be mindful: How to end your struggle with mindless eating and start savoring food with intention and joy. Oakland: New Harbringer Publications


  1. (2019). Will Fasting Help You Live Longer? [online] Available at: <> [Accessed 5 January 2021]
  2. com (2019). Geneticist David Sinclair on the Latest Anti-Ageing Studies | Joe Rogan. [online] Available at: <> [Accessed 1 January 2021]
  3. com (2020). Rhona Patrick: Sauna Use Improves Cardio Health And Prevents Muscle Atrophy. [online] Available at: <> [Accessed 1 January 2021]
  4. com (2015). How Sauna Use May Boost Longevity. [online] Available at: <> [Accessed 1 January 2021]
  5. Rhone N (2018). Top 10 Anti-Ageing Foods for Skin, Brain, Muscle and Gut Health. [online] Healthline. Available at: <> [Accessed 1 January 2021]
  6. Gill C, Haldar S, Boyd L, Bennett R, Whiteford J, Butler M, Pearson J, Bradbury I and Rowland I (2007). Watercress supplementation in diet reduces lymphocyte DNA damage and alters blood antioxidant status in healthy adults. The American Journal of Clinical Nutrition, 85(2), p 504-510
  7. Anytime Fitness (2021). 10 Anti-Ageing Foods. Anytime Fitness. [online] Available at: <> [Accessed 5 January 2021]
  8. Pinterest (2021). 10 Anti-Ageing Foods. Anytime Fitness | Anti-Ageing Food, Anti-Ageing, Collagen Benefits. [online] Available at: <> [Accessed 5 January 2021]
  9. London, B., 2012. Eat Your Way To A Facelift: Watercress Is The Latest Wonder Food In Battle Against Ageing. [online] Mail Online. Available at: <> [Accessed 13 January 2021].
  10. Freehan B (2020). 2020 Social Media Industry Benchmark Report | Rival IQ. [online] Rival IQ. Available at: <> [Accessed 1 January 2021]
  11. Smoteks H (2020). How to Use Telegram for Content Promotion [The Ultimate Guide]. [online] Linkody's blog. Available at: <> [Accessed 6 January 2021]